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FOREWORD

THE REGIONAL AQUIFER-SYSTEM ANALYSIS PROGRAM

The Regional Aquifer-System Analysis (RASA) Program was started in 
1978 following a congressional mandate to develop quantitative appraisals of 
the major ground-water systems of the United States. The RASA Program 
represents a systematic effort to study a number of the Nation's most 
important aquifer systems, which in aggregate underlie much of the country 
and which represent an important component of the Nation's total water 
supply. In general, the boundaries of these studies are identified by the 
hydrologic extent of each system and accordingly transcend the political 
subdivisions to which investigations have often arbitrarily been limited in the 
past. The broad objective for each study is to assemble geologic, hydrologic, 
and geochemical information, to analyze and develop an understanding of the 
system, and to develop predictive capabilities that will contribute to the 
effective management of the system. The use of computer simulation is an 
important element of the RASA studies, both to develop an understanding of 
the natural, undisturbed hydrologic system and the changes brought about in 
it by human activities, and to provide a means of predicting the regional 
effects of future pumping or other stresses.

The final interpretive results of the RASA Program are presented in a series 
of U.S. Geological Survey Professional Papers that describe the geology, 
hydrology, and geochemistry of each regional aquifer system. Each study 
within the RASA Program is assigned a single Professional Paper number, 
and where the volume of interpretive material warrants, separate topical 
chapters that consider the principal elements of the investigation may be 
published. The series of RASA interpretive reports begins with Professional 
Paper 1400 and thereafter will continue in numerical sequence as the interpre­ 
tive products of subsequent studies become available.

Gordon P. Eaton 
Director
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REGIONAL AQUIFER-SYSTEM ANALYSIS-NORTHEAST GLACIAL VALLEYS

APPLICATION OF SURFACE-GEOPHYSICAL METHODS TO
INVESTIGATIONS OF SAND AND GRAVEL AQUIFERS IN THE

GLACIATED NORTHEASTERN UNITED STATES

By F.P. HAENI

ABSTRACT

Reconnaissance hydrogeologic mapping and ground-water-flow mod­ 
eling in the glaciated Northeastern United States require data on the 
hydrogeologic boundaries and grain-size characteristics of sand and 
gravel aquifers. The combined use of surface-geophysical methods such 
as seismic-refraction, direct-current-resistivity, very-low-frequency 
terrain-resistivity, and inductive terrain-conductivity can provide 
these data.

Forward-modeling studies of 10 hypothetical aquifer systems indi­ 
cated that very-low-frequency terrain-resistivity and inductive terrain- 
conductivity methods can be used to detect horizontal and vertical 
changes in the electrical properties of typical sand and gravel aquifers.

Surface-geophysical surveys at eight sites in Connecticut, New 
York, and Maine, have shown that the combined use of four geophysical 
methods can define the hydrogeologic boundaries and can distinguish 
between fine-grained and coarse-grained stratified drift. The seismic- 
refraction method could be used to determine depths to the water table 
and to bedrock at all the field sites where it was used, but could not be 
used to detect lithologic changes within the aquifer. Direct-current- 
resistivity methods could be used to detect large-scale resistivity 
changes that were related to either specific conductance of ground 
water or major lithologic changes in the aquifers. In some hydrogeo­ 
logic settings, this method could be used to identify the water table and 
bedrock surface. Very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods used in conjunction with the other 
surface-geophysical methods can be used to identify anomalies caused 
by small-scale changes in aquifer lithology or specific conductance of 
ground water.

Comparisons of the interpreted electrical resistivity of the aquifer 
with the logs of test holes and wells indicate that for a given specific 
conductance of ground water, the bulk electrical resistivity of the 
stratified drift increases with increasing grain size. This relation is 
useful for distinguishing fine-grained drift deposits from coarse sand 
and gravel deposits.

INTRODUCTION

Sand and gravel aquifers are the principal sources of 
ground water in the glaciated Northeastern United

States. The use of surface-geophysical methods to inves­ 
tigate sand and gravel aquifers was evaluated as part of 
the U.S. Geological Survey's Northeast Glacial Valleys 
Regional Aquifer-System Analysis (RASA). The back­ 
ground and objectives of the Northeast Glacial Valleys 
RASA are described by Lyford (1986) and the overall 
objectives of the RASA program are described in the 
Foreword.

This report is one of several chapters in U.S. Geolog­ 
ical Survey Professional Paper 1415 that describe vari­ 
ous aspects of the geology, hydrology, and geochemistry 
of the glacial aquifers in the Northeastern United States.

Delineation of hydrogeologic boundaries and grain-size 
characteristics of sand and gravel aquifers is required for 
reconnaissance hydrogeologic mapping and ground- 
water flow modeling studies. Test drilling is generally 
used to obtain such data but commonly at only a few 
sites. Surface-geophysical methods can be used to rap­ 
idly obtain areal hydrogeologic data on sand and gravel 
aquifers. The geophysical data, although not as detailed 
as drill-hole data, provide broader areal coverage and 
therefore are well suited for most hydrogeologic studies.

All surface-geophysical methods measure some physi­ 
cal property of subsurface materials, or the fluids within 
them, from the surface of the Earth. Typical physical 
properties measured are electrical resistivity or conduc­ 
tivity, velocity of sound, and the strength of gravity and 
magnetic fields. Knowledge of the physical properties of 
the subsurface unit of interest and the properties of the 
surrounding units is critical for the successful application 
of surface-geophysical methods. Selection of the appro­ 
priate geophysical method is determined by the specific 
physical properties of a hydrogeologic unit or the differ­ 
ences in these properties between adjoining hydrogeo­ 
logic units.

Al
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PURPOSE AND SCOPE

This report presents the results of a study conducted 
to show how a combination of seismic-refraction, direct- 
current-resistivity (de-resistivity), very-low-frequency 
(VLF) terrain-resistivity, and inductive terrain- 
conductivity methods can be used to map hydrogeologic 
boundaries and to determine general lithologic charac­ 
teristics of sand and gravel aquifers in the Northeastern 
United States.

The first part of this study used forward-modeling 
computer programs to calculate the response of VLF 
terrain-resistivity and inductive terrain-conductivity 
methods to several hypothetical aquifer settings. The 
results were then used to determine whether these 
electromagnetic methods could detect horizontal and 
vertical resistivity variations typical of glacial aquifers. 
In this modeling process, it was assumed that (1) the 
depths to the water table and bedrock were known from 
drill-hole or seismic-refraction data, (2) the gross 
subsurface-layer resistivities were known from 
de-resistivity data, and (3) the conductivity of the ground 
water was constant. Variations in the resistivities of the 
aquifer should represent variations in the grain size of 
the aquifer material.

The second part of this study was an application of the 
surface-geophysical methods at eight field sites, repre­ 
senting typical sand and gravel aquifers in the glaciated 
Northeastern United States. It demonstrated that (1) 
the combined use of seismic-refraction, de-resistivity, 
and electromagnetic methods could be used to detect 
hydrogeologic boundaries and determine the resistivity 
variations within the aquifer material, and (2) the resist­ 
ivity variations represented differences in the grain size 
of the aquifer material.

PREVIOUS STUDIES

A combination of surface-geophysical methods can be 
used advantageously in hydrogeologic investigations. 
Many papers have described the use of individual and 
combined surface-geophysical methods in hydrogeologic 
studies and are important sources of information for 
hydrogeologists (Lennox and Carlson, 1970; Mabey, 
1970; Ogilvy, 1970; Shiftan, 1970; Zohdy and others, 
1974; Worthington, 1975; Collett, 1979).

The two surface-geophysical methods that have been 
most widely used in hydrogeologic studies are seismic- 
refraction and de-resistivity methods. The references 
listed above all contain sections on the use of seismic- 
refraction method in hydrogeologic investigations. In 
addition, Bonini and Hickok (1958), Eaton and Watkins 
(1970), and Haeni (1986a, 1988) specifically discuss use of 
the seismic-refraction method in hydrogeologic studies.

The seismic-refraction method is used primarily to deter­ 
mine the boundaries of aquifers in situations where 
seismic-velocity discontinuities between hydrogeologic 
units exist. This method has been used to map depth to 
the water table and depth to bedrock in many glacial- 
aquifer reconnaissance studies (Warrick and Winslow, 
1960; Gill and others, 1965; Lennox and Carlson, 1967; 
Watkins and Spieker, 1971; Dickerman and Johnston, 
1977; Sharp and others, 1977; Haeni and Anderson, 1980; 
Mazzaferro, 1980; Fretwell and Stewart, 1981; Grady 
and Handman, 1983; Tolman and others, 1983; Haeni and 
Melvin, 1984; Ayers, 1989; Ayotte, 1989; Moore, 1990; 
Melvin and Bingham, 1991) and in a few simulation 
studies (Birch, 1976; Haeni, 1978; Morrissey, 1983; 
Haeni, 1986a; Mazzaferro, 1986; Toppin, 1987; Tepper 
and others, 1990).

De-resistivity methods have been used successfully to 
delineate hydrogeologic boundaries that are character­ 
ized by changes in electrical properties of subsurface 
materials. Thick clay layers, the presence of coarse­ 
grained beds within a fine-grained unit, and water- 
quality changes are examples of hydrogeologic conditions 
that can be detected by de-resistivity methods.

In most hydrogeologic studies where de-resistivity 
methods have been applied, high-resistivity zones are 
associated with coarse-grained aquifer material satu­ 
rated with water, having low dissolved-solids concentra­ 
tions. Low-resistivity zones have been interpreted as 
fine-grained materials or highly conductive water (Page, 
1968; Zohdy, 1969; Flathe, 1970; Zohdy and others, 1974; 
Worthington, 1975; Zohdy and others, 1977; Gorhan, 
1976; Rijo and others, 1977; Worthington, 1977; Marti- 
nelli, 1978; Bisdorf and Zohdy, 1979; Verma and others, 
1980; South Florida Water Management District, 1982). 
Only a few de-resistivity studies in glacial terrains have 
been reported (Kelly, 1962; Buhle and Brueckmann, 
1964; Lennox and Carlson, 1967; Frohlich, 1974, 1979). 
Several applications of this method have been reported 
where the quantitative relation between aquifer resist­ 
ivity and hydraulic conductivity has been investigated. 
These studies and the subsequent discussion of their 
results show that only empirical relations, over limited 
geographical areas, can be established (Kelly, 1977a, 
1977b, 1978,1980; Sabet, 1978; Heigold and others, 1979; 
Mazac and Landa, 1979; Heigold and others, 1980; Kosin- 
ski and Kelly, 1981; Urish, 1981; Kelly and Kosinski, 
1982; Leonard-Mayer and Taylor, 1982; Biella and oth­ 
ers, 1983; Mazac and others, 1985; Huntley, 1986).

Electromagnetic methods also can be used to map 
variations in aquifer conductivity or resistivity. These 
methods have been used successfully for the qualitative 
delineation of conductive plumes in contaminated glacial 
aquifers (Duran and Haeni, 1982; Greenhouse and Slaine, 
1982; Greenhouse and Harris, 1983; Grady and Haeni,
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TABLE I.  General relation of hydrogeologic units in the glaciated 
Northeastern United States to the velocity of sound in each unit

Hydrogeologic unit

Unconsolidated, stratified-drift or alluvial deposits: 
Unsaturated ................................. 0.3-0.6
Saturated ................................... 1.2-1.8

Saturated till .................................. 2.1-2.4
Saturated sedimentary rocks .................... 3.4-4.3
Saturated crystalline rocks ...................... 4.6-6. 1

1984; Barlow and Ryan, 1985; Grady, 1989; Greenhouse 
and others, 1989). Stewart (1982) used this method to 
map the saltwater interface in coastal aquifers. Grady 
and Haeni (1984) also showed how these methods could 
be used for the quantitative delineation of a conductive 
contaminant plume in a glacial aquifer. The use of 
electromagnetic methods for aquifer assessments has 
been limited (Wynn, 1979; Sinha, 1980; Haeni, 1986b) and 
no quantitative work has been reported using these 
methods in glacial terrains.

PRINCIPLES OF SURFACE-GEOPHYSICAL 
METHODS

De-resistivity, VLF terrain-resistivity, and inductive 
terrain-conductivity methods, and data from previously 
conducted seismic-refraction studies were used in this 
study. Each method provided different hydrogeologic 
information about the subsurface. The seismic-refraction 
data were used to determine the depth to water table and 
depth to bedrock. The de-resistivity method was used to 
determine if an empirical relation between aquifer resist­ 
ivity and grain size existed, and to measure the gross 
electrical properties of each subsurface unit. The VLP 
terrain-resistivity and inductive terrain-conductivity 
methods were used to map the horizontal and vertical 
resistivity variations within an aquifer or adjacent units. 
Each surface-geophysical method has unique operating 
principles, advantages, and limitations.

SEISMIC-REFRACTION METHOD

Sand and gravel aquifers in the Northeastern United 
States generally consist of unconsolidated sand and 
gravel deposits underlain by till and crystalline or sedi­ 
mentary bedrock. There are substantial changes in the 
velocity of sound at the water table in unconsolidated 
material and at the till and bedrock interfaces (table 1). 
The velocity of sound in the various geologic units, which 
is called seismic velocity, generally increases with depth. 
The seismic velocity also increases as the density of the 
geologic materials increases.

In the seismic-refraction method, sound waves are 
produced by a variety of methods such as sledge hammer 
strikes on a metal plate, explosives, and weight drops, 
and travel through the subsurface. When the seismic 
velocity in the subsurface units increases with depth, 
some of the sound energy is refracted along the higher 
seismic-velocity unit. The refracted sound energy is 
eventually transmitted back to the surface where it is 
received by geophones and recorded by the seismograph. 
Measurement of the sound wave traveltimes from the 
sound source to the receiver, and the measured distance 
between source and receiver can be transformed into a 
time-distance plot (fig. 1). From this plot, seismic veloc­ 
ity of individual layers and depth to refracting layers can 
be calculated.

Explosive sound sources and a 12-channel commercial 
seismograph, the EG&G model 1210F, were used to 
collect the refraction data used in this study. Methods for 
the interpretation of field seismic-refraction data are well 
documented (Dobrin, 1976; Telford and others, 1976; 
Mooney, 1981; Sjogren, 1984) and many computer mod­ 
eling programs are available (Scott and others, 1972; 
Scott, 1973, 1977a, 1977b; Ackermann and others, 1982). 
In this study, the method described by Scott and others 
(1972), Scott (1973), Haeni and others (1987), and Haeni 
(1988) was used and the result of the interpretation is a 
cross-sectional profile of the refracting layers. An exam­ 
ple of a geohydrologic section based on interpreted 
results of a seismic-refraction profile conducted in Ston- 
ington, Conn, is shown in figure 2.

DIRECT-CURRENT-RESISTIVITY METHOD

The theory of de-resistivity methods is well described 
by several authors (Zohdy and others, 1974; Dobrin, 
1976; Telford and others, 1976; Mooney, 1980). The bulk 
resistance of porous earth material depends on several 
variables with complex interrelations, but principally 
depends on the electrical conductivity of the matrix 
material and the electrical conductivity of the fluid within 
the porous medium. Urish (1981) concluded from his 
laboratory packing tests and from the work of Kezdi 
(1974) that fine-grained materials tend to have higher 
porosities than coarse-grained materials. He also showed 
through theoretical calculations and field tests that, if the 
fluid conductivity remains constant, the resistivity of the 
aquifer material will generally increase with grain size. 
Resistivity methods, therefore, have the capability of 
providing a qualitative estimate of the grain size of sand 
and gravel aquifers over a limited geographic area.

A commercial de-resistivity unit, the Bison model 
2390, consisting of a transmitter, receiver, and switch- 
box, was used in this study. The resistivity of subsurface 
materials is measured in the field by putting a direct



A4 REGIONAL AQUIFER-SYSTEM ANALYSIS-NORTHEAST GLACIAL VALLEYS

Time-distance 
curve

12

SHOT POINT

45 6 7 i 

DISTANCE 

GEOPHONES

9 10 11 12 GEOPHONES

EXPLANATION

V 1 = Velocity of sound in 
unsaturated alluvium 
(460 meters per 
second)

V 2 = Velocity of sound in 
saturated alluvium 
(1,520 meters per 
second)

DISTANCE
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FIGURE 2. Interpreted seismic-refraction profile in Stonington, Conn.
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FIGURE 3. Principles of direct-current-resistivity method.

current or a low-frequency alternating current into the 
ground and measuring the resultant voltage drop across 
a given distance (fig. 3). The apparent resistivity then 
can be calculated, and using one of several interpretation 
procedures, the resistivity of individual subsurface units 
can be interpreted (Zohdy, 1974; Zohdy and Bisdorf, 
1975). Many geometric arrangements of the current and 
voltage electrodes have been developed (Zohdy and 
others, 1974). Schlumberger soundings were used in this 
study. The distance between the current electrodes was 
systematically increased and the distance between the 
potential electrodes was periodically increased to meas­ 
ure the effect on deeper geologic units. This method has 
limited horizontal resolution because the interpretation 
assumes that each subsurface layer is horizontal and 
homogeneous over the distance between the electrodes.

ELECTROMAGNETIC METHODS

VERY-LOW-FREQUENCY TERRAIN-RESISTIVITY METHOD

Very-low-frequency, 15-24 kilohertz (kHz), radio 
waves are transmitted from U.S. Navy communication 
centers located around the world. As these waves prop­ 
agate over the Earth's surface, magnetic and electrical 
fields are induced in the ground (fig. 4). The magnitude of 
the horizontal component of these fields depends on the 
apparent resistivity of the subsurface materials at the 
measuring point and on the frequency of the VLF radio 
wave. The angle between the horizontal components of 
the electrical and magnetic fields (the phase angle) 
depends on the stratification of the subsurface. The 
mathematical expressions for these relations are derived
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and, the exploration depth ( 6) = 500 ( pi F ) 1/2 
where:
P1«P2 = relative resistivity of conductive

and resistive ground 
F = frequency of transmitter 
E x = horizontal radial electrical field 
H y = horizontal radial magnetic field

FIGURE 4. Principles of very-low-frequency terrain-resistivity method. (Modified from Collett, 1979, fig. 6.)

by Wait (1982) and discussed by Keller and Frischknecht 
(1966). In a homogeneous Earth, the phase angle is 45° 
and the measured resistivity is the true resistivity of the 
subsurface. If the shallow subsurface material is more 
conductive than the deep subsurface material, the phase 
angle will be less than 45°. When the subsurface layering 
is reversed, the phase angle will be greater than 45°.

A commercial VLF unit, the Geonics model EM16R, 
was used in this study. Field measurements were taken 
by determining the direction to the transmitting station 
using the receiver coils in the handle of the electronic 
receiver, orienting the two probes and cable in the same 
direction as this station, and reading the apparent resist­ 
ivity and phase angle.

This method is limited by the effects of cultural 
interference such as pipelines, fences, power lines, or 
other metal objects. The depth of penetration is limited 
by the frequency of the transmitting station and the

conductivity of the subsurface units. In very conductive 
units (1-100 ohm-meters (ohm-m)), the penetration 
depth is limited to a few meters or tens of meters. In 
very resistive material (100-10,000 ohm-m) penetration 
depths can be as great as 400 meters (m). An example of 
how the penetration depth of the instrument varies with 
terrain resistivity and VLF transmitting frequencies is 
shown in figure 5.

INDUCTIVE TERRAIN-CONDUCTIVITY METHOD

Inductive terrain-conductivity methods induce electri­ 
cal currents in the Earth by energizing a coil of wire (the 
transmitter coil) at the surface of the Earth with an 
alternating current (fig. 6). This alternating current 
produces a magnetic field which induces current flow in 
the Earth, which, in turn, produces a secondary mag­ 
netic field. The secondary field induces a voltage in the 
instrument, which is converted to apparent conductivity
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FIGURE 5. Penetration depth of very-low-frequency terrain- 
resistivity method.

and displayed. Apparent conductivity would equal true 
conductivity only if the Earth were homogeneous. The 
magnitude of the secondary field is directly proportional 
to the conductivity of the Earth. This proportion is true 
only when the coil spacing is much less than the depth at 
which the electromagnetic wave attenuates to 0.3679 of 
its original amplitude (low induction number assump­ 
tion). In practice, this means that the conductivity of the 
Earth is less than 100 millisiemens per meter (mS/m) 
(McNeill, 1980b). McNeill gives a clear explanation of the 
principle of operation of this method and the importance 
of the low induction number assumption.

A commercial inductive terrain-conductivity meter, 
the Geonics model EM34-3, which measures apparent 
conductivity directly, was used in this study. It consists 
of a transmitter and a transmitting coil; a receiver and a 
receiving coil; and 10-, 20-, and 40-m intercoil connecting 
cables. The depth of penetration is dependent on the

EXPLANATION

T = Transmitter coil 
R = Receiver coil
Terrain conductivity (o ) = 4/2 71 f |a 0 s2 ( H s / H p ) 

Where f = operating frequency
\i a = permeability of free space 
s = intercoil spacing 

H s = secondary magnetic field 
H p = primary magnetic field

FIGURE 6. Principles of inductive terrain-conductivity method. (Modified from Geonics, 1979, fig. 1.)
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FIGURE 7.  Relative and cumulative response curves for the Geonics EM34-3 inductive terrain-conductivity instrument.
(Modified from McNeill, 1980b, figs. 6 and 11.)

spacing and orientation of the coils and the conductivity 
contrast of the target; it is relatively independent of the 
resistivity of the subsurface material. The influence of 
subsurface material at different depths (in a homoge­ 
neous Earth) on the apparent conductivity (recorded by 
the instrument) is shown on the left side of figure 7 for 
different coil (dipole) positions and intercoil spacings. 
When the coils are in the horizontal-dipole mode (coils 
held vertically and coplanar), the instrument responds 
mainly to earth materials located from the surface to a 
depth of 0.75 times the intercoil spacing and is most 
sensitive to near-surface materials (fig. 7). In the 
vertical-dipole mode (coils held horizontally and copla­ 
nar), the instrument responds to mainly earth materials 
between 0.1 and 1.5 times the intercoil spacing and is 
most sensitive to layers at a depth of about 0.4 times the 
intercoil spacing. Near-surface materials have little 
effect on the instrument in this mode.

The cumulative response curves, defined as the con­ 
tribution to the secondary magnetic field from all mate­ 
rial below a given depth, are shown in the right side of

figure 7. These curves allow the computation of instru­ 
ment response to any hypothetical combination of layers 
and are used in the forward-modeling programs. It is 
important to note that the measured apparent conduc­ 
tivity is a function of the conductivity and thickness of 
individual layers and the response characteristic of the 
instrument.

Conductivity is the reciprocal of resistivity and is 
defined by

Conductivity (in
1,000

(in ohm_m)
The change in conductivity (AC) for a given change in 

resistivity (A.R), in a known environment having a resist­ 
ivity of R, can be approximated by

AC= -l,OOOAfl 
R2

Because of the inverse square relation of resistivity 
and conductivity in resistive terrains (R= 1,000 ohm-m), 
a 1-mS/m change in conductivity reflects a 1,000-ohm-m
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FIGURE 8. Relations among stratified drift, till, and bedrock in a typical glacial valley.

resistivity change, whereas the same change (1 mS/m) in 
conductive terrain (72=42 ohm-m) reflects only a 1.8- 
ohm-m change in resistivity.

Six measurements that correspond to both dipole 
positions at each intercoil spacing can be made at each 
data collection station, giving the instrument a limited 
depth-sounding capability. Horizontal conductivity 
changes within the subsurface can be detected by making 
a series of measurements along a profile across the area 
of interest.

This method is limited by electrical or cultural inter­ 
ference caused by power lines, pipelines, and fences; the 
depth of penetration is limited by the strength and 
frequency of the transmitter and the intercoil spacing.

RESPONSE OF ELECTROMAGNETIC METHODS
TO HYPOTHETICAL GEOELECTRIC EARTH

MODELS

Hypothetical geoelectric Earth models were used to 
determine if VLF terrain-resistivity and inductive 
terrain-conductivity methods could be used to define 
horizontal and vertical lithologic changes within typical 
sand and gravel aquifers found in the Northeastern 
United States. Sand and gravel aquifers in this region 
consist primarily of unconsolidated deposits of varying

grain sizes, often underlain by till that is thin and 
discontinuous. These units are underlain by either sedi­ 
mentary or crystalline bedrock (fig. 8). In order to model 
these aquifers, the following simplifying assumptions 
were made:
1. Sand and gravel aquifer material can be unsaturated 

or saturated;
2. Till is usually thin and discontinuous, and therefore is 

assumed to have little effect on the model;
3. Resistivity of the aquifer units can be empirically 

related to the grain size of the aquifer material;
4. Quality of water in the aquifer is constant within the 

modeled area;
5. Unsaturated zone is homogeneous, with constant 

resistivity;
6. Unsaturated zone has a constant thickness;
7. Each bedrock type is homogeneous and infinitely 

thick, with a constant resistivity; and
8. All layers are homogeneous and of infinite horizontal

extent.
Using these assumptions, 10 hypothetical geoelectric 

Earth models were used in this study to represent 
conditions typical of glacial valleys: (1) coarse-grained 
stratified drift overlying sedimentary or crystalline bed­ 
rock; (2) fine-grained stratified drift overlying sedimen­ 
tary or crystalline bedrock; (3-6) coarse-grained strati­ 
fied drift over fine-grained stratified drift overlying
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TABLE 2.  Resistivity values of various materials used in the hypo­ 
thetical Earth models

Material description Resistivity 
(ohm-m)

Unsaturated, coarse-grained stratified drift. 
Unsaturated, fine-grained stratified drift... 
Saturated, coarse-grained stratified drift ... 
Saturated, fine-grained stratified drift .....
Sedimentary bedrock.....................
Crystalline bedrock ......................

2,000
300
800

50
500

2,000

sedimentary or crystalline bedrock; and (7-10) fine­ 
grained stratified drift over coarse-grained stratified 
drift overlying sedimentary or crystalline bedrock.

For each hypothetical geoelectric layer in the model, 
the resistivities were estimated from previous investiga­ 
tions or published tables (Collett, 1979; Telford and 
others, 1976; McNeill, 1980a; Mooney, 1980). The resist­ 
ivity values used to represent the various geologic layers 
are given in table 2.

Two forward-modeling computer programs were used 
to calculate the response of VLF terrain-resistivity and 
inductive terrain-conductivity instruments over various 
hypothetical geoelectric Earth models. The VLF com­ 
puter program, VLF.BAS, is based on plane-wave elec­ 
tromagnetic theory and is written in Basic computer 
language for an IBM or compatible personal computer. 
The computer program, documented by Grantham and 
others (1986), calculates the apparent resistivity and 
phase angle between the induced horizontal magnetic 
and electric fields that would be measured by a Geonics 
EM16R VLF terrain-resistivity instrument over a hori­ 
zontally layered Earth.

The inductive terrain-conductivity computer program, 
EM34.FOR, calculates the electromagnetic potential 
generated by an oscillating magnetic dipole over a hori­ 
zontally layered Earth, and from that, the apparent 
conductivity of the Earth is calculated. Calculations are 
made for the Geonics EM34-3 instrument's three inter- 
coil spacings, three frequencies, and two dipole orienta­ 
tions. The program, written in Fortran for an IBM or 
compatible personal computer, is documented by 
Grantham and others (1987).

The results of the forward-modeling programs are 
presented in figures 9 through 18 for the 10 hypothetical 
geoelectric Earth models. The variation of apparent 
conductivity between the various intercoil spacings and 
dipole orientation for each model can be qualitatively 
understood by comparing the model characteristics (such 
as the thickness and conductivity of individual layers) 
with the relative and cumulative response curves (fig. 7). 
The apparent resistivity, as measured by the method, is 
a function of the product of the conductivity of individual

layers and the response function of a particular intercoil 
spacing and dipole orientation.

COARSE-GRAINED AQUIFER MATERIAL

The first hypothetical geoelectric Earth model is a 
resistive geologic setting. The model consists of a coarse­ 
grained unconsolidated aquifer saturated with freshwa­ 
ter (resistivity of 800 ohm-m) and is underlain by rela­ 
tively conductive sedimentary bedrock (resistivity of 500 
ohm-m) or relatively resistive crystalline bedrock (resist­ 
ivity of 2,000 ohm-m) (fig. 9).

In this setting, the VLF terrain-resistivity method 
measures a high apparent resistivity (590-1,630 ohm-m), 
and penetrates to a depth of about 100 m (fig. 5). A 
change in apparent resistivity is related to the thickness 
of the aquifer material over a given bedrock type. Over 
sedimentary (conductive) bedrock, the apparent resist­ 
ivity will increase as the aquifer thickness increases. 
Over crystalline (resistive) bedrock, the apparent resist­ 
ivity will increase as the aquifer thickness decreases. A 
change in the measured phase angle is related to the type 
of bedrock, if the bedrock is within the penetration depth 
of the method. For a given aquifer thickness, if the 
bedrock is resistive (relative to the aquifer material; for 
example, crystalline bedrock), the phase angle would be 
less than 45°; if the bedrock is conductive (relative to the 
aquifer material; for example, sedimentary bedrock), the 
phase angle would be greater than 45°. The phase angle 
is generally independent of the aquifer thickness.

In this same geologic setting, the inductive terrain- 
conductivity method measures a low apparent conductiv­ 
ity (0.6-1.7 mS/m, fig. 9). The readings of individual 
intercoil spacings and dipole modes are dependent on the 
conductivity of the subsurface layers and the response 
curves of the instrument (fig. 7). McNeill (1980b) pre­ 
sents a detailed discussion of the response of the method 
to subsurface conductors. In general, however, the 
response is related to the product of the layer conductiv­ 
ity and the instrument response for a given intercoil 
spacing and dipole orientation.

In resistive terrains, the response of the instrument to 
relatively large changes in resistivity is small because of 
the design of the conductivity meter and the units of 
measurement. A change in apparent conductivity is 
related to the thickness of the aquifer material over a 
given bedrock type. Over sedimentary (conductive) bed­ 
rock, the apparent conductivity (fig. 9) will decrease 
slightly (0.1-0.4 mS/m) as the aquifer thickness 
increases. Over crystalline (resistive) bedrock, the 
apparent conductivity will increase slightly (0.1-0.4 
mS/m) as the aquifer thickness increases. All of the 
conductivity measurements are slightly higher (0.1-1.1 
mS/m) over the conductive bedrock than over the resist-
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FIGURE 9. Hypothetical geoelectric Earth model of a coarse-grained unconsolidated aquifer over­ 
lying sedimentary and crystalline bedrock, and the modeled response based on the very-low- 
frequency terrain-resistivity and inductive terrain-conductivity methods.
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FIGURE 10. Hypothetical geoelectric Earth model of fine-grained unconsolidated material overlying 
sedimentary and crystalline bedrock, and the modeled response based on the very-low-frequency 
terrain-resistivity and inductive terrain-conductivity methods.
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ive bedrock and are most noticeable in the 40-m vertical- 
dipole mode (1.1 mS/m).

FINE-GRAINED MATERIAL

The second hypothetical geoelectric Earth model is a 
conductive geologic setting (resistivity of 50 ohm-m), 
such as fine-grained unconsolidated material, an uncon- 
solidated aquifer saturated with conductive ground 
water, or till, which is underlain by relatively resistive 
sedimentary bedrock (resistivity of 500 ohm-m) or crys­ 
talline bedrock (resistivity of 2,000 ohm-m) (fig. 10).

In this setting, the VLF terrain-resistivity method 
measures a low apparent resistivity (50-102 ohm-m), and 
penetrates to a depth of about 20 m (fig. 5). A change in 
apparent resistivity is related to the thickness of the 
fine-grained (conductive) material, as well as the type of 
bedrock, if the bedrock is within the penetration depth. 
The apparent resistivity will generally decrease as the 
thickness of the fine-grained material increases, over 
either sedimentary or crystalline bedrock (fig. 10). This 
happens because both types of bedrock are resistive 
compared to the fine-grained material. A change in the 
measured phase angle is related to the type of bedrock (if 
the bedrock is within the penetration depth) and the 
thickness of the fine-grained material. The phase angle 
measured over shallow sedimentary bedrock is higher 
than the phase angle measured over shallow crystalline 
bedrock because the crystalline bedrock is much more 
resistive than the sedimentary bedrock. Both phase 
angles are less than 45° because both types of bedrock 
are resistive compared to the fine-grained material. As 
the fine-grained material thickens, the effect of the 
bedrock diminishes because of the decreased penetration 
depth of the method, thus, the phase angle increases. 
The phase angle will exceed 45° if a relatively resistive 
(unsaturated) layer is present at the surface and the 
bedrock is below the penetration depth of the method. In 
general, VLF terrain-resistivity instrument readings 
are dominated by resistivity of the conductive material.

The inductive terrain-conductivity method measures a 
moderately high apparent conductivity (4.2-14.8 mS/m) 
in the geologic setting. The depth of penetration of this 
method is not affected by the conductivity of the subsur­ 
face layers. The apparent conductivity increases over 
both sedimentary and crystalline bedrock as the thick­ 
ness of the fine-grained material increases. The 10-m and 
20-m horizontal-dipole mode readings are generally 
lower than the corresponding vertical-dipole mode read­ 
ings when bedrock is deep. This difference results from 
the position of the thick fine-grained (conductive) layers 
and the response curves of the instrument. The readings 
are affected by the bedrock when the fine-grained mate­ 
rial is thin. In this case, the 20-m and 40-m horizontal-

dipole mode readings are higher than the corresponding 
vertical-dipole mode readings over both bedrock types; 
four readings are higher for sedimentary bedrock than 
for crystalline bedrock.

COARSE-GRAINED AQUIFER MATERIAL OVER 
FINE-GRAINED MATERIAL

The next four hypothetical geoelectric Earth models 
are examples of geologic settings that have resistive 
units (coarse-grained, saturated aquifer material) over­ 
lying more conductive units (fine-grained, saturated 
material or till). The models had different total thick­ 
nesses of coarse-grained and fine-grained materials (thin 
or thick) over different bedrock types (sedimentary or 
crystalline) (figs. 11-14).

In these settings, the VLF terrain-resistivity readings 
of apparent resistivity and phase angle vary with the 
geometry of the site. Also, as the thickness of the 
resistive layer (aquifer material) decreases and the thick­ 
ness of the fine-grained material increases, the resistiv­ 
ity increases and the penetration depth of the method 
decreases from 100 to 20 m (fig. 5).

Where the glacial material is thin (12 m), the apparent 
resistivity decreases from 1,630 to 102 ohm-m (over 
crystalline bedrock, fig. 13) and from 590 to 88 ohm-m 
(over sedimentary bedrock; fig. 11) as the thickness of 
the conductive material increases and the thickness of 
the aquifer material decreases. The apparent resistivity 
values are always higher over resistive bedrock than 
over conductive bedrock. The readings are affected less 
by the type of bedrock as the thickness of the conductive 
material increases and the penetration depth of the 
method decreases. The phase angle also decreases from 
41° to 23° (over crystalline bedrock) and from 49° to 31° 
(over sedimentary bedrock) as the thickness of the 
conductive material increases and the effect of bedrock is 
decreased. When bedrock is within the penetration depth 
of the method, the phase angle is higher over sedimen­ 
tary bedrock than over crystalline bedrock because of the 
different resistivities of these units.

Where the glacial material is thick (62 m), the apparent 
resistivity decreases from 910 to 60 ohm-m (over crys­ 
talline bedrock, fig. 14) and from 790 to 60 ohm-m (over 
sedimentary bedrock, fig. 12) as the thickness of the 
conductive material increases and the thickness of the 
aquifer material decreases. The apparent resistivity and 
phase angles are relatively independent of bedrock type 
because the penetration depth of the method is exceeded, 
except when no fine-grained material is present. The 
phase angle does not vary much (65-69°, fig. 14) until the 
section is either all fine grained (50°) or all coarse grained 
(39°).
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FIGURE 11. Hypothetical geoelectric Earth model of a thin unconsolidated section consisting of a 
coarse-grained aquifer overlying fine-grained material, all of which overlies sedimentary bed­ 
rock, and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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FIGURE 12. Hypothetical geoelectric Earth model of a thick unconsolidated section consisting of a 
coarse-grained aquifer overlying fine-grained material, all of which overlies sedimentary bed­ 
rock, and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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2 H, horizontal-dipole mode; V, vertical-dipole mode.

FIGURE 13. Hypothetical geoelectric Earth model of a thin unconsolidated section consisting of a 
coarse-grained aquifer overlying fine-grained material, all of which overlies crystalline bedrock, 
and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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FIGURE 14. Hypothetical geoelectric Earth model of a thick unconsolidated section consisting of a 
coarse-grained aquifer overlying fine-grained material, all of which overlies crystalline bedrock, 
and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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In summary, as the thickness of the conductive (fine­ 
grained) layer increases, and the thickness of the over­ 
lying aquifer material decreases (figs. 11 to 14), the 
depth of penetration of the method is exceeded. Because 
of this, the measured apparent resistivity and phase 
angles are independent of bedrock type and, thus, are 
dependent upon the thickness and resistivity of the 
fine-grained conductive material and the resistive aqui­ 
fer material.

For the inductive terrain-conductivity method and 
where the glacial material is thin (12 m, figs. 11 and 13), 
the apparent conductivity readings all increase as the 
thickness of the conductive material increases and the 
thickness of the aquifer material decreases. In addition, 
the readings over conductive bedrock are all higher 
(0.1-1.1 mS/m) than the equivalent readings over resist­ 
ive bedrock and are most noticeable in the 40-m vertical- 
dipole mode, which is most responsive to deep layers (fig. 
7). The vertical-dipole readings (figs. 11 and 13) are 
generally higher than the horizontal readings. This dif­ 
ference reflects the position of the resistive over conduc­ 
tive glacial material in the subsurface and the response 
characteristics of the two dipole orientations (the 
horizontal-dipole mode is generally affected by shallow 
layers and the vertical-dipole mode is affected by deeper 
layers). As the aquifer material thins and the fine­ 
grained material thickens, first the 40-m horizontal- 
dipole and then the 20-m horizontal-dipole readings 
become larger than the vertical-dipole readings. This 
change is due to the thickening conductive material and 
its effect on the relative response curve of the horizontal- 
dipole mode (fig. 7).

Where the glacial material is thick (62 m, figs. 12 and 
14), the inductive terrain-conductivity method has read­ 
ings that again all increase as the thickness of conductive 
material increases and the thickness of the aquifer mate­ 
rial decreases. All of the readings except for the 40-m 
vertical-dipole readings are independent of bedrock 
type. The 40-m vertical-dipole readings are slightly 
higher (0.2-0.3 mS/m) over the conductive bedrock than 
over the resistive bedrock since this dipole mode has the 
greatest depth of penetration. Vertical-dipole mode 
readings are almost all higher or equal to the horizontal- 
dipole readings reflecting the occurrence of resistive 
over conductive material. This difference is due to the 
presence of the conductive fine-grained material at the 
maximum point on the relative response curves for the 
vertical-dipole modes. The difference also results from 
the presence of the resistive unsaturated surface mate­ 
rial or the resistive aquifer material at the maximum 
point on the relative response curve for the horizontal- 
dipole modes (fig. 7). The one exception is the 40-m 
reading when the section consists entirely of fine-grained 
material. In this case, the relatively resistive bedrock is

affecting the 40-m vertical dipole, causing it to be less 
conductive than the horizontal dipoles which gets most of 
its response from the conductive fine-grained material.

FINE-GRAINED MATERIAL OVER COARSE-GRAINED 
AQUIFER MATERIAL

The next four hypothetical geoelectric Earth models 
are examples of geologic settings that have conductive 
units (fine-grained saturated material) overlying resist­ 
ive material, such as a buried coarse-grained esker. 
These models specified either thick or thin layers of 
fine-grained and coarse-grained glacial material over 
different bedrock types (sedimentary or crystalline) 
(figs. 15-18).

In these settings, the depth of penetration of the VLF 
terrain-resistivity method is limited due to the high 
conductivity of the shallow fine-grained material. For 
example, the penetration depth of the method in material 
with a resistivity of 50 ohm-m is only 20 m (fig. 5).

Where the glacial material is thin (12 m, figs. 15 and
17), the method penetrates the entire unconsolidated 
section. The increasing thickness of the coarse-grained 
material and the decreasing thickness of the fine-grained 
material may be detected by increases in the measured 
apparent resistivity (88-590 and 102-1,630 ohm-m). The 
phase angle is independent of the relative thickness of 
the fine- and coarse-grained material, until the section 
becomes entirely coarse-grained. However, the phase 
angle is affected by the bedrock type. More resistive 
bedrock decreases the phase angle, and increases the 
apparent resistivity. 

Where the glacial material is thick (62 m, figs. 16 and
18), buried coarse-grained materials and different bed­ 
rock types beneath about 26 m of fine-grained material 
are undetectable because of the limited penetration 
depth of the method. VLF terrain-resistivity readings of 
phase angle and apparent resistivities therefore become 
independent of the resistivity of deeper layers as thick­ 
ness of the upper fine-grained section increases and the 
thickness of the coarse-grained aquifer unit decreases.

For the inductive terrain-conductivity method and 
where the glacial material is thin (12 m, figs. 15 and 17), 
the apparent conductivity readings decrease (11.3-1.0 
and 11.1-0.6 mS/m) as the thickness of the conductive 
material decreases and the thickness of the coarse­ 
grained aquifer increases. The 10-m spacing vertical- 
dipole readings are generally greater or equal to the 
10-m horizontal dipole readings. This difference is due to 
the presence of the conductive saturated fine-grained 
materials underlying the relatively more resistant unsat­ 
urated fine-grained materials. In the 20-m and 40-m 
intercoil spacings, however, the horizontal-dipole read­ 
ings are higher than the vertical-dipole readings because
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1 1ntercoil spacing, in meters.
2 H, horizontal-dipole mode; V, vertical-dipole mode.

FIGURE 15. Hypothetical geoelectric Earth model of a thin unconsolidated section consisting of a 
fine-grained material overlying a coarse-grained aquifer, all of which overlies sedimentary 
bedrock, and the modeled response based on the very-low-frequency terrain-resistivity and 
inductive terrain-conductivity methods.
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FIGURE 16. Hypothetical geoelectric Earth model of a thick unconsolidated section consisting of a 
fine-grained material overlying a coarse-grained aquifer, all of which overlies sedimentary 
bedrock, and the modeled response based on the very-low-frequency terrain-resistivity and 
inductive terrain-conductivity methods.
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FIGURE 17. Hypothetical geoelectric Earth model of a thin unconsolidated section consisting of a 
fine-grained material overlying a coarse-grained aquifer, all of which overlies crystalline bedrock, 
and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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FIGURE 18. Hypothetical geoelectric Earth model of a thick unconsolidated section consisting of a 
fine-grained material overlying a coarse-grained aquifer, all of which overlies crystalline bedrock, 
and the modeled response based on the very-low-frequency terrain-resistivity and inductive 
terrain-conductivity methods.
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of conductive fine-grained material being near the max­ 
imum response portion of the horizontal-dipole response 
curve. Both dipole readings are also affected by the 
conductivity of the bedrock; all readings increase (0.1-1.1 
mS/m) as the conductivity of the bedrock increases. The 
largest increase caused by bedrock is in the 40-m 
vertical-dipole mode, in which most of the response is 
from the bedrock (fig. 7).

Where the glacial material is thick (62 m, figs. 16 and 
18), all of the apparent conductivity readings except the 
40-m vertical-dipole readings become independent of 
bedrock type since this is about the maximum penetra­ 
tion depth of the method. The 40-m vertical-dipole read­ 
ings are slightly higher (0.2-0.3 mS/m) over the conduc­ 
tive bedrock than over the resistive bedrock. As in the 
shallow case, almost all of the apparent conductivity 
measurements increase with increasing thickness of the 
conductive material and decreasing thickness of the 
aquifer material. The 10- and 20-m vertical-dipole read­ 
ings are generally higher than the horizontal-dipole 
readings a response that reflects the resistive, unsat- 
urated fine-grained surface material overlying the con­ 
ductive saturated material. The 40-m horizontal-dipole 
readings are generally higher than the vertical-dipole 
readings. This higher reading reflects the maximum 
response of the horizontal dipole located within the 
conductive fine-grained material and the maximum 
response of the vertical dipole located within the resist­ 
ive coarse-grained aquifer material.

SUMMARY OF MODELING STUDIES

Results of computer models that simulate the use 
of VLF terrain-resistivity and inductive terrain- 
conductivity methods in hypothetical aquifer settings, 
representative of the glaciated Northeastern United 
States, demonstrate that both methods can detect small 
scale horizontal and vertical electrical changes in the 
subsurface. Each method works better in some geologic 
settings than in others because of differences in the 
design and operating principles of the two instruments. 
Forward-modeling studies of specific geologic settings 
provide a basis for designing and interpreting field 
measurements.

In general, in resistive terrains composed of entirely 
coarse-grained aquifer material or in coarse-grained 
aquifer materials over fine-grained material, the VLF 
terrain-resistivity method is sensitive to moderate 
changes in the thickness of aquifer material in the 
subsurface. The method has a good depth of penetration 
(100 m in 800 ohm-m terrains) (fig. 5) and can detect 
conductive layers underlying resistive aquifer layers. If 
bedrock is within the penetration depth of the method, it 
affects the phase angle.

In these settings, the inductive terrain-conductivity 
method measures low conductivity values that may be 
difficult to accurately read on the instrument. Small 
changes in the apparent conductivity are related to the 
thickness of the aquifer material and to the type of 
bedrock.

In conductive terrains composed of fine-grained mate­ 
rial or fine-grained material overlying coarse-grained 
aquifer material, the VLF terrain-resistivity method has 
a limited penetration depth (25 m in 50 ohm-m terrains) 
(fig. 5). Consequently, this method responds only to 
near-surface changes in resistivity. Changes in apparent 
resistivity are dependent on the thickness of the fine­ 
grained conductive material and to the type of shallow 
bedrock.

The penetration depth with inductive terrain- 
conductivity methods depends on the intercoil spacing 
and dipole mode, and is relatively independent of the 
resistivity of the ground. It is sensitive to changes in the 
position, thickness, and conductivity of individual layers 
in the subsurface. The apparent conductivity increases as 
the thickness of the conductive fine-grained material 
increases. The 40-m vertical-dipole position is affected by 
the conductivity of the bedrock.

FIELD APPLICATION OF SURFACE- 
GEOPHYSICAL METHODS

Eight field sites in the glaciated Northeastern United 
States were selected to (1) verify the results obtained 
with the hypothetical geoelectric Earth models; (2) show 
that the combined use of seismic-refraction, de- 
resistivity, and two electromagnetic methods may be 
capable of determining hydrogeologic boundaries and 
resistivity changes within sand and gravel aquifers; and 
(3) establish that an empirical relation exists between 
formation resistivity and grain size. These sites, located 
in Connecticut, New York, and Maine (fig. 19), represent 
typical hydrogeologic settings of the region, and are 
similar to the settings used in the hypothetical models. 
The sites were selected because the following criteria 
were met:
1. Well or test-hole data were available;
2. Seismic-refraction data or well data that defined 

depths to water and bedrock were available;
3. Cultural features such as power lines, pipelines, and 

fences were minimal;
4. Water-quality problems were not known to exist;
5. Area was large enough to conduct Schlumberger 

dc-electrical soundings;
6. Land-surface topography was mostly flat;
7. Site had easy field access; and
8. Water-quality information was available.
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EXPLANATION
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FIGURE 19. Location of the eight field sites in the glaciated Northeastern United States for testing surface-geophysical
methods. (Modified from Lyford and others, 1984.)

Existing information from seismic-refraction profiles, 
well and test-hole logs, water-quality data, and geologic 
maps of each site were evaluated prior to the commence­ 
ment of field work.

A de-resistivity sounding, a VLF terrain-resistivity 
survey, and an inductive terrain-conductivity survey 
were conducted at each site coincident with the location 
of a seismic-refraction profile. A de-resistivity sounding 
was not conducted at one of the sites in Maine (repre­ 
senting an esker) because the assumption of a horizon­ 
tally layered Earth was not valid.

A Bison model 2390 de-resistivity instrument was used 
to conduct Schlumberger electrical soundings; the result­ 
ing plot of apparent resistivity as a function of electrode 
spacing was plotted in the field to ensure that a smooth 
curve was obtained. The electrode spacing was increased 
until several readings in bedrock (or the deepest layer of

interest) were obtained. Since the thickness and compo­ 
sition of glacial materials can vary substantially across a 
valley, the de-resistivity measurements are considered 
to represent the average lithology and thickness of the 
subsurface units at a particular sounding site.

Upon completion of the de-resistivity sounding, a VLF 
terrain-resistivity survey using a Geonics model EM16R 
and an inductive terrain-conductivity survey using a 
Geonics model EM34-3 were run. Intercoil spacings of 
10 m, 20 m, and 40 m and both horizontal- and vertical- 
dipole modes were used on the EM34-3 survey. At most 
sites, electromagnetic readings (both VLF and terrain- 
conductivity) were taken at 30- or 60-m intervals along 
the de-sounding and seismic-refraction lines. At the 
esker site in Maine, the electromagnetic profiles were 
perpendicular to the assumed axis of the esker.
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RESULTS AND INTERPRETATIONS OF FIELD 
STUDIES

A geologic section showing land surface, water table, 
and depth to bedrock was constructed from seismic- 
refraction and test-hole data. Next, the de-resistivity 
sounding data were interpreted to obtain general resist­ 
ivity values for the hydrogeologic layers at each site. The 
field-generated de-resistivity sounding curves were 
smoothed by shifting individual segments and eliminat­ 
ing cusps caused by lateral inhomogeneities (Zohdy and 
others, 1974). Six values of apparent resistivity for each 
log cycle of current electrode spacing were then chosen 
and entered into a computer inversion program (Zohdy, 
1974). The result was a geoelectric Earth model with a 
large number of layers based on small electrical property 
variations. Many of these layers were combined manu­ 
ally and used with the seismic-refraction and test-hole 
data to construct a simplified four- or five-layered geo­ 
electric Earth model. A major limitation of this simplified 
geoelectric Earth model is the assumption that each 
subsurface layer is horizontal and homogeneous over the 
distance between the electrodes. Small-scale lateral vari­ 
ations in layer thickness or resistivity of individual layers 
cannot be detected using this method. The interpreted 
resistivity values for individual layers were used with 
the geologic logs of nearby wells and test holes to develop 
a relation between grain size and electrical resistivity.

The VLF forward-modeling computer program was 
used then to refine the simplified geoelectric Earth 
model so that it agreed with the field VLF data. Several 
simplifying assumptions had to be made in the VLF 
modeling process since a four-layer Earth model would 
have eight unknowns the thickness and resistivity of 
each layer. Varying all of the unknowns could lead to an 
unreasonable subsurface model. In general, depths to 
the water table and to bedrock were assumed to be 
known from the seismic-refraction data, and were not 
varied during the VLF modeling process. The resistivity 
of the unsaturated material and the coarse-grained aqui­ 
fer material was assumed to be constant. Thus, the 
thickness and resistivity of the fine-grained material and 
the resistivity of the bedrock are unknowns. To match 
the apparent resistivity and phase angle determined in 
the field by the VLF survey, some or all of these 
variables were changed during the modeling process. 
The changes depended on the specific geologic setting 
and results of the hypothetical modeling process. Typi­ 
cally, four to six modeling runs of the program were 
needed to match the modeled VLF data to the field data.

An interpreted geoelectric Earth model resulted from 
this process, but the question of whether or not it was a 
reasonable solution remained. Because the response of 
both electromagnetic methods to lateral and vertical 
variations in conductivity or resistivity is different, the

conjunctive use of both methods would define an 
improved geoelectric Earth model. To accomplish this, 
data from the VLF model were used as input for the 
terrain-conductivity forward-modeling program. The 
output of this model then was compared with the 
EM34-3 terrain-conductivity field data. Points along the 
electromagnetic profile then were computed and com­ 
pared with the measured field data. If the field data 
varied substantially, the points were noted as problem 
areas and the differences were attributed to one or more 
of the following: (1) errors in obtaining field measure­ 
ments of electromagnetic data, (2) cultural interference 
with field measurements, (3) a nonreasonable VLF 
model, and (4) the presence of unknown water-quality 
problems.

COARSE-GRAINED AQUIFER MATERIAL OVERLYING 
CRYSTALLINE BEDROCK

A stratified-drift deposit located in Stonington, Conn., 
(fig. 20) represents a coarse-grained aquifer overlying 
crystalline bedrock. A de-resistivity sounding, a VLF 
terrain-resistivity profile, and an inductive terrain- 
conductivity profile were conducted in an open field 
parallel to and 15 m from a dirt road. Power and 
telephone lines along the road service a baseball field in 
the area. Seismic-refraction data from line B-B' and a 
geologic log, water level, and water-quality data from 
well SN-164 were available from a previous study of this 
area (Bingham, 1991). The depth to the water table 
determined from seismic-refraction data agrees with the 
water level in the well, but the depth to bedrock deter­ 
mined from seismic-refraction data is about 4 m deeper 
than the depth determined from the well and test holes.

The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model are 
shown in figure 21. This multilayered geoelectric Earth 
model was simplified into a four-layer model by using the 
seismic-refraction data for depths to the water table and 
bedrock, and by combining layers with similar resistivi­ 
ties. Comparison of this simplified four-layer geoelectric 
Earth model with the geologic logs from well SN-164 and 
the two test holes SN-143th and SN-144th, drilled for 
this study (fig. 22), shows that the top two geoelectric 
layers (450 and 2,000 ohm-m) can be correlated with 
unsaturated soil and unsaturated, coarse-grained strati­ 
fied drift, respectively. The third geoelectric layer (500 
ohm-m) represents the saturated aquifer material that 
varies in grain size from very fine sand to gravel. The 
lowest geoelectric layer (1,600 ohm-m) represents crys­ 
talline bedrock. The specific conductance of ground 
water from the coarse-grained stratified drift (well



A26 REGIONAL AQUIFER-SYSTEM ANALYSIS-NORTHEAST GLACIAL VALLEYS

72°52'30" 72°52'

nr/ Base from U.S Geological Survey, 
u Ashaway 1 24,000, 1953, photorevised 1970 

Old Mystic 1 24,000, 1958, photorevised 1970

1,000 2,000 FEET 
_I

500 METERS

CONTOUR INTERVAL 50 FEET 
Datum is Sea Level

EXPLANATION
A'

B'

Electromagnetic 
survey line

Seismic-refraction 
line

Direct-cunrent- 
resistivity survey 
line

SN-143TH

SN-164

Test hole Number 
is town well number 
used in U.S. Geological 
Survey publications

Observation well 
Number is town well 
number used in U.S. 
Geological Survey 
publications

FIGURE 20. Location of the study site in Stonington, Conn., 
including wells, test holes, and surface-geophysical survey 
lines.

SN-164) was 102 microsiemens per centimeter at 25 
degrees Celsius (jjiS/cm at 25°C) on August 17, 1982.

This field site is similar to the hypothetical model 
shown on the right side of figure 9. The results of the 
VLF terrain-resistivity survey are shown in the upper 
part of figure 23. The data show generally high apparent 
resistivities of 1,200-1,700 ohm-m in the middle of the 
line and lower values, 300-700 ohm-m, at each end of the 
line. The phase angles are all less than 45°, which 
indicates relatively conductive material over resistive 
material (saturated, coarse-grained stratified drift over 
crystalline bedrock).

In the VLF forward-modeling interpretation, the elec­ 
trical resistivities, the thicknesses of layers 1 and 2 
(unsaturated soil and stratified drift) and the thickness of 
layer 3 (saturated stratified drift) were not varied. The 
only variables in the modeling process were the electrical 
resistivities of layers 3 and 4 (saturated stratified drift 
and bedrock).

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 23. The apparent resistivity and 
phase angles generated in the modeling program closely 
matched the field values. The interpreted electrical 
resistivity of layer 3 (saturated stratified drift) is highest 
in the middle of the section and decreases at both ends. 
Because the specific conductance of ground water is 
assumed to be constant across this section, this resistiv­ 
ity change may indicate that the coarsest material is in 
the center of the section and that the amount of fine 
material increases toward each end. The modeled resist­ 
ivity of t}ie bedrock also varies along the section and is 
largely dependent on the depth of penetration of the 
VLF terrain-resistivity method and the degree and 
depth of water-filled fractures in the bedrock. The dif­ 
ference in the number of fractures at depth, and hence 
the bulk resistivity of the bedrock, probably accounts for 
the resistivity change of this unit.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 23) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 24). The 
computed values agree with the field values with the 
exception of two values: the 20-m vertical-dipole read­ 
ings at stations 60 and 120. Because only these two field 
readings are high, and because these readings differ 
substantially from adjacent values, they may reflect 
nearby electrical interference from telephone or power 
lines. The close agreement of the remaining data points 
suggests that the geoelectric Earth model (fig. 23) inter­ 
preted from the de-resistivity, terrain-resistivity, and 
seismic-refraction data is a reasonable model of the 
subsurface. Geologic logs from the two test holes and one
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well along this profile indicate that the center of the 
profile has slightly coarser grained material than the 
ends of the profile (fig. 22).

COARSE-GRAINED AQUIFER MATERIAL OVERLYING 
SEDIMENTARY BEDROCK

Stratified-drift deposits located in Granby, Conn., and 
Smyrna, N.Y., represent coarse-grained aquifers over­ 
lying sedimentary bedrock. At the Granby site (fig. 25), 
a de-resistivity sounding, a VLF terrain-resistivity pro­ 
file, and an inductive terrain-conductivity profile, were 
conducted parallel to the axis of the valley, 200-300 m 
from a paved road. Seismic-refraction data from line 
B-B' and a geologic log and water-level data from well 
GR-330 were available at this site. Water-quality data 
were collected on February 14, 1985. The depths to 
water table and bedrock determined from seismic- 
refraction data are similar to data from well GR-330, 
although complete seismic-refraction coverage was not 
available.

The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting geoelectric Earth model are shown in 
figure 26. This multilayered geoelectric Earth model was 
simplified into a five-layer model by using the seismic-

refraction data for depth to water table and bedrock and 
by combining layers having similar resistivities. Com­ 
parison of this simplified five-layer geoelectric Earth 
model with the geologic logs of well GR-330 and test 
holes GR-25th and GR-26th (fig. 27) shows that the top 
two geoelectric layers (425 and 7,000 ohm-m) can be 
correlated with unsaturated soil and unsaturated, 
coarse-grained stratified drift respectively. The next two 
layers (2,000 and 450 ohm-m) represent the saturated 
aquifer material, with the lower unit reflecting the 
combined effect of a thin layer of till beneath a layer of 
slightly finer-grained aquifer material. The bottom geo­ 
electric layer was initially assumed to be all sedimentary 
bedrock. This sounding actually included two bedrock 
types on each side of a major fault. The resistivity value, 
therefore, is not indicative of either rock type. The 
specific conductance of ground water from the coarse­ 
grained stratified drift (well GR-330) was 130 |xS/cm at 
25°C on February 14, 1985.

This field site is similar to the hypothetical model 
shown on the left side of figure 9. The results of the VLF 
terrain-resistivity survey are shown in the upper part of 
figure 28. The data show a low apparent resistivity value 
of 100 ohm-m at the southern end (A) of line A-A', and an 
increase to 200 ohm-m near the northern end of the line. 
The phase angles are all greater than 45°, which indicates 
resistive over conductive material (saturated, coarse­ 
grained stratified drift over sedimentary bedrock).
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In the VLF forward-modeling interpretation, electri­ 
cal resistivities and thicknesses of layers 1 and 2 (unsat- 
urated soil and stratified drift) were held constant. 
Layers 3 and 4 were combined into one layer, represent­ 
ing the saturated, coarse-grained aquifer material. The 
thickness of this layer was varied in the modeling process 
only where seismic-refraction data were not available. 
Therefore, the variables in the modeling process were 
the electrical resistivities of layers 3 and 4 (saturated 
stratified drift and bedrock) and, in some areas, the 
thickness of the saturated stratified drift.

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 28. The apparent resistivity and 
phase angles generated in the modeling program closely 
matched the field data. Depth to bedrock, determined 
from the modeling process where seismic-refraction data 
were unavailable, had mixed results. The depths were 
similar to those in test hole GR-25th and well GR-330. 
However, modeled depth was substantially in error at 
test hole GR-26th, near station 0. The bedrock resistivity

was generally low (35-115 ohm-m), but at stations 420 
and 480, it increased to 150 and 135 ohm-m, respectively. 
A geologic map of the Tariffville quadrangle (Schnabel 
and Eric, 1965) shows the location of a major Triassic 
boundary fault that separates sedimentary and crystal­ 
line bedrock in this area (fig. 25). The change in bedrock 
resistivity was, therefore, interpreted as a change in 
bedrock type. The change in bedrock type was later 
confirmed with rock samples from test holes GR-25th and 
GR-26th (fig. 27). The low resistivity of the crystalline 
bedrock (as compared to the Stonington and Oxford 
sites) is interpreted to be caused by a greater number of 
fractures in the crystalline bedrock associated with the 
boundary fault and the possibility of more conductive 
water in these fractures. Specific conductance of ground

FIGURE 23. Very-low-frequency apparent resistivity and phase- 
angle field data, and the interpreted geoelectric Earth model 
from direct-current-resistivity, seismic refraction, and very-low- 
frequency apparent resistivity data, from the study site in 
Stonington, Conn.
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water from sedimentary rocks of the Upper Connecticut 
River basin ranges from 86 to 2,150 n-S/cm at 25°C 
(Ryder and others, 1981, p. 59).

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 28) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 29). Data 
from stations 0 and 300 do not agree, possibly because 
field data at these points are poor or the geoelectric 
Earth model was interpreted incorrectly. In addition, all 
of the computed 40-m vertical-dipole readings are too 
high. The field values indicate that the bedrock is more 
resistive than the value obtained in the VLF modeling 
process. The causes for this observation are the oversim­ 
plification of the interpreted Earth model and the differ­ 
ent penetration depths of the two electromagnetic meth­ 
ods. The penetration depth of the VLF terrain- 
resistivity method is limited in conductive material (at 90 
ohm-m it penetrates 35 m of material), which at this site 
consists of a thin glacial till and upper fractured and 
saturated sedimentary and crystalline bedrock. The 
inductive terrain-conductivity method maintains its 
depth penetration in this setting (penetration depth of 
the vertical-dipole mode at the 40-m spacing is about 60 
m) and therefore measures deeper, more resistive bed­ 
rock layers. The detailed de-resistivity data (fig. 26) 
indicate that the bedrock is not uniform, but rather is 
layered. The top 30 m of bedrock has an interpreted 
resistivity value of 175 ohm-m and is underlain by a 400 
ohm-m layer.

A stratified-drift deposit located in Smyrna, N.Y., 
(fig. 30) represents a second example of a coarse-grained 
aquifer overlying sedimentary bedrock. A de-resistivity 
sounding, a VLF terrain-resistivity profile, and an induc­ 
tive terrain-conductivity profile were conducted perpen­ 
dicular to the axis of the valley. Seismic-refraction data 
from line B-B' were available from a previous study 
(Reynolds and Brown, 1984), and water-quality data 
were collected at well 13-23 on June 11,1985. A compar­ 
ison of the depths to the water table and bedrock 
determined from seismic-refraction data with the log of 
test hole 14-21 is difficult at this site because the test 
hole is located 200 ft from the seismic-refraction line. 
Water-level measurement was not obtainable for this 
well. Well 13-23 did not have a log or water level because 
it is a domestic well and only water-quality information 
from the coarse-grained stratified drift was available.

The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model are 
shown in figure 31. This multilayered geoelectric Earth 
model was simplified into a four-layer model by using the
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seismic-refraction data for depth to bedrock and by 
combining layers with similar resistivities. Comparison 
of the simplified four-layer geoelectric Earth model with 
the geologic log of test hole 14-21 (fig. 32) shows that the 
top two geoelectric layers, 700 and 2,200 ohm-m, can be 
correlated with unsaturated soil and coarse-grained 
material and that the bottom two layers, 550 and 300 
ohm-m, represent saturated, coarse-grained material 
and sedimentary bedrock. The interpreted resistivity 
values of the saturated coarse-grained layer (550 ohm-m) 
is substantially lower than the 2,000 to 2,500 ohm-m 
determined for coarse-grained drift at Granby, Conn. 
This lower value is due primarily to the high conductivity 
of the ground water at the Smyrna site. The specific 
conductance of the ground water from the coarse-grained 
stratified drift (well 13-23) at Smyrna was 710 |xS/cm at 
25°C as compared to 130 |xS/cm at 25°C for the stratified 
drift at Granby. The more conductive ground water 
substantially lowers the bulk resistivity of the coarse­ 
grained aquifer.

This field site is similar to the hypothetical model 
shown on the left side of figure 9. The results of the VLF 
terrain-resistivity survey are shown in the upper part of 
figure 33. These data show that the apparent resistivity 
varies from 150 to 300 ohm-m. The phase angles are all 
45° or slightly higher, reflecting slightly more resistive

material overlying slightly more conductive material (the 
unsaturated and saturated stratified drift over sedimen­ 
tary bedrock).

In the VLF forward-modeling process, the electrical 
resistivities of layers 1 and 2 (unsaturated soil and 
stratified drift) and the thickness of layer 1 were held 
constant and the depths to water table and bedrock, 
determined from seismic-refraction data, were specified. 
Therefore, variables in the modeling process were the 
resistivities of layers 3 and 4 (saturated stratified drift 
and bedrock).

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 33. The apparent resistivities and 
phase angles generated in the modeling program closely 
matched the field data. The resistivity of both saturated 
stratified drift (160-300 ohm-m) and bedrock (133-330 
ohm-m) did not vary greatly.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 33) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 34). All 
stations show a good correlation at all intercoil spacings 
except for station 0. At this station, the field values are 
substantially greater than the predicted values. Station 0
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is located next to a state highway that receives heavy 
applications of deicing chemicals each winter. The large 
field readings of this station could be due to the interfer­ 
ence from power lines and guard rails along the highway 
or the presence of deicing chemicals in the ground water.

FINE-GRAINED MATERIAL OVERLYING SEDIMENTARY 
BEDROCK

A stratified-drift deposit located in Simsbury, Conn., 
(fig. 35) represents fine-grained material overlying sed­ 
imentary bedrock. A de-resistivity sounding, a VLF 
terrain-resistivity profile, and an inductive terrain- 
conductivity profile were conducted along a dirt road 
that crosses the axis of the valley. Sources of cultural 
interference occurred at the west end of the profile from 
railroad tracks and from a construction company work­ 
shop with power and telephone lines. The remainder of 
the area, which is used partly for agricultural activities, 
was a relatively flat flood plain free from cultural inter­

ference. Seismic-refraction data from line B-B', and the 
geologic log of well SI-363 were available from an 
ongoing study of this area (Melvin and Bingham, 1991). 
Specific conductance of ground water in the fine-grained 
stratified drift and depth to the water table was meas­ 
ured in well SI-363 on February 11,1985. The depths to 
the water table and bedrock determined from seismic- 
refraction data agree with the limited data from well 
SI-363.

The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model are 
shown in figure 36. This multilayered geoelectric Earth 
model was simplified into a four-layer model by using the 
depths to water table and bedrock determined from 
seismic-refraction data and by combining layers with 
similar resistivities. Comparison of this simplified four- 
layer geoelectric Earth model with the geologic log of 
well SI-363 (fig. 37) shows that the top layer, with a 
resistivity of 800 ohm-m, can be correlated with the
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combined unsaturated stratified drift and soil layers. The 
second layer, with a resistivity of 500 ohm-m, represents 
a thin layer of saturated coarse-grained material. The 
third layer, with a resistivity of 140 ohm-m, represents a 
very thicks section of fine-grained material, and the 
lowest layer, with a resistivity of 200 ohm-m, represents 
the sedimentary bedrock. The specific conductance of the 
ground water in the fine-grained stratified drift in the 
well was 180 jxS/cm at 25°C.

This field site is similar to the hypothetical model 
shown on the left side of figure 10, except that a shallow 
resistive coarse-grained unit is present. The results of 
the VLF terrain-resistivity survey are shown in the 
upper part of figure 38. The field measurements gener­ 
ally have a low apparent resistivity, 30-150 ohm-m, and 
phase angles of 45°-60°, indicating resistive over conduc­ 
tive material. These readings reflect the limited penetra­ 
tion of the VLF method in conductive terrains (approx­ 
imately 25 m of penetration in 50-ohm-m material) and 
the presence of thin layers of resistive unsaturated and 
saturated, coarse-grained material above the thick 
conductive fine-grained section. At this site, the VLF 
terrain-resistivity method cannot detect resistivity 
changes in the bedrock.

The electrical resistivity determined by the de- 
resistivity sounding, of layer 1 (soil), layer 2 (saturated, 
coarse-grained stratified drift), and layer 4 (bedrock), as 
well as the depths to water table and bedrock, as 
determined from the seismic-refraction profile, were not 
varied in the VLF forward-modeling process. Variables 
in the modeling process were therefore, thickness of 
saturated, coarse-grained material and thickness and 
resistivity of fine-grained material.

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 38. A good match between field and 
calculated VLF apparent resistivities and phase angles 
was obtained. This interpretation shows a thin, discon­ 
tinuous high-resistivity layer of saturated, coarse­ 
grained material overlying a conductive (16-140 ohm-m) 
layer or section of saturated, fine-grained material. The 
resistivity of the deep sedimentary bedrock had no effect 
on the model calculations.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 38) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 39). Field 
data do not agree with the computed values obtained at 
the beginning of the profile (stations 0-300) but agree 
beyond this point. Because the values measured in the 
field were anomalously high, it was inferred that either 
an unknown water-quality problem exists at this site or
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FIGURE 31. Smoothed plot of field-data points from direct-current-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model for data from the study site in Smyrna, N.Y.

cultural interference strongly affects the readings. Read­ 
ings could not be made in this area at the 40-m intercoil 
spacing; therefore, the high readings are assumed to be 
caused by cultural interference.

COARSE-GRAINED AQUIFER MATERIAL OVER
FINE-GRAINED MATERIAL OVERLYING SEDIMENTARY

BEDROCK

Stratified-drift deposits located in Farmington, Conn., 
and Preble, N.Y., represent coarse-grained aquifer 
material over fine-grained material overlying sedimen­ 
tary bedrock. The Farmington, Conn., site (fig. 40) is 
located in the bottom of a flat valley with no nearby 
cultural interference, and is underlain by an arkosic 
sandstone (Simpson, 1966). A de-resistivity sounding, a 
VLF terrain-resistivity profile, and an inductive terrain- 
conductivity profile were conducted in an open field 
perpendicular to the axis of the valley. Seismic-refraction 
data from line B-B', the geologic log and water-level 
data from well F-282 and test hole F-68th, and water- 
quality data from well F-295 were available from a 
previous investigation (Mazzaferro, 1980). The depth to 
the water table determined from seismic-refraction data 
agrees with the test-hole and well data, and the depth to 
bedrock agrees in general with other test-hole data in the 
valley (Mazzaferro, 1980).

The smoothed plot of the field-data points from the 
de-resistivity sounding, computed sounding curve, and 
resulting layered geoelectric Earth model are shown in 
figure 41. This multilayered geoelectric Earth model was 
simplified into a five-layer model by using the seismic- 
refraction data for depths to water table and bedrock, 
the geologic log from test hole F-68th, and by combining 
layers with similar resistivities. Comparison of this sim­ 
plified five-layer geoelectric Earth model with the geo­ 
logic log (fig. 42) shows that the two top layers, with 
resistivities respectively of 900 and 1,740 ohm-m, are 
unsaturated soil and coarse-grained material. It is under­ 
lain by a saturated, coarse-grained unit with a resistivity 
of 560 ohm-m, which, in turn, is underlain by a thick, 
fine-grained unit with a resistivity of 240 ohm-m. The 
entire section is underlain by sedimentary bedrock with 
a resistivity of 140 ohm-m. The specific conductance of 
the ground water from the coarse-grained stratified drift 
(well F-295) was 162 ^S/cm at 25°C on May 17, 1977.

This field site is similar to the hypothetical model 
shown in figure 11. The results of the VLF terrain- 
resistivity survey are shown in the upper part of figure 
43. The field data show low apparent-resistivity values, 
150-400 ohm-m, and phase angles greater than 45°, 
indicating resistive material (saturated, coarse-grained 
stratified drift) over conductive material (fine-grained 
stratified drift and sedimentary bedrock).
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FIGURE 32. Simplified geoelectric Earth model from direct- 
current-resistivity data, and well and test-hole logs from the 
study site in Smyrna, N.Y.

In the VLF model, the top two layers of the simplified 
geoelectrical model were combined into one layer with a 
resistivity of 1,250 ohm-m. In the VLF forward-modeling 
process, the resistivity of layer 1, soil and Unsaturated 
stratified drift, was decreased from 1,250 ohm-m to 300 
ohm-m and then held constant. One reason for the 
different values of the upper layer between the two 
methods is that the low resistivity soil could have been 
absent from the area near the center of the de-resistivity 
spread. The resistivities of layer 2, saturated, coarse­ 
grained stratified drift; and layer 4, sedimentary bed­ 
rock, were not changed. Thickness of layer 1 and depth 
to bedrock were determined from seismic-refraction data 
and were not varied. Variables, therefore, were thick­ 
ness of layer 2 (coarse-grained stratified drift) and resist­ 
ivity of layer 3 (fine-grained stratified drift).

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 43. A good match between the 
calculated and field values for apparent resistivities and 
phase angles was obtained. The interpreted geoelectric 
Earth model shows a saturated, coarse-grained unit of

varying thickness over a fine-grained unit. As in the 
previous site at Simsbury, Conn., the low resistivity of 
the fine-grained layer prevented deep penetration by the 
VLF method; therefore, the modeling results are inde­ 
pendent of the bedrock resistivity.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 43) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 44). The 
agreement was generally very good with the exception of 
the data at station 650. At this station, the interpreted 
geoelectric Earth model does not represent the subsur­ 
face.

Upon completion of the geophysical surveys, six test 
holes were drilled along the geophysical survey line to 
confirm the interpreted Earth model. The logs of the drill 
holes are shown in figure 45 and, in general, confirm the 
interpreted geoelectric model. The one exception is the 
test hole at station 650 (F-73th) where the predicted 
contact between coarse- and fine-grained stratified drift 
is much deeper than the contact reported in the test hole. 
This confirms the previous conclusion that the inter­ 
preted geoelectric Earth model does not represent the 
subsurface at this station.

A stratified-drift deposit filling a broad valley in the 
town of Preble, N.Y., (fig. 46) is a second example of 
coarse-grained aquifer material over fine-grained mate­ 
rial overlying sedimentary bedrock. The field site is 
located between two lakes and a major interstate high­ 
way, in a gently rolling glacial valley underlain by 
Devonian shale. The highway has power lines, guard 
rails, lights, and buried pipes associated with it. A 
de-resistivity sounding, a VLF terrain-resistivity pro­ 
file, and an inductive terrain-conductivity profile were 
conducted near the shores of Green and Upper Little 
York Lakes, as far away from the highway as possible. 
Geologic logs from test holes 54-49b and 44-26b were 
available from a previous study (Randall, 1972). Water- 
quality data were available from well 05-50 (Buller, 1978, 
well CP38) and from well 00-01, which was sampled for 
this study on June 12, 1985.

Bedrock was penetrated at 102 m in a test hole, 4 
kilometers (km) south of the study area (Buller, 1978) 
and is assumed to be at about the same depth under the 
study area. Because bedrock is beyond the penetration 
depth of electromagnetic methods, it was not considered 
in the interpretation process.

FIGURE 33. Very-low-frequency apparent resistivity and phase- ^ 
angle field data, and the interpreted geoelectric Earth model 
from direct-current-resistivity, seismic refraction, and very-low- 
frequency apparent resistivity data, from the study site in 
Smyrna, N.Y.
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The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model are 
shown in figure 47. The multilayered geoelectric Earth 
model was simplified to a five-layer model by assuming 
that the adjacent lake levels represent the altitude of the 
water table and combining layers with similar resistivi­ 
ties. Comparison of the simplified five-layer geoelectric 
Earth model with test-hole logs 44-26b and 54-49b (fig. 
48) shows that the two top layers, with resistivities of 
325 and 1,500 ohm-m, can be correlated with soil and 
unsaturated coarse-grained material, respectively. 
These units are underlain by saturated sand and gravel 
with some silt having an interpreted resistivity of 250 
ohm-m. This relatively low resistivity is due to the high 
specific conductance of the ground water in the coarse­ 
grained stratified drift, 500 jjiS/cm at 25°C, as measured 
in wells 05-50 and 00-01. The bottom two geoelectric 
layers, having resistivities of 60 and 175 ohm-m, are 
correlated with the fine sand and silt layers that are 
present in sections of this valley.

This field site is similar to the hypothetical model 
shown in figure 12. The results of the VLF terrain- 
resistivity survey are shown in the upper part of figure 
49. The field data show a relatively low apparent resist­ 
ivity (100-250 ohm-m), which reflects the high specific 
conductance of ground water in coarse and fine-grained 
material underlying it. Phase angles from 50° to 60° 
indicate resistive material over conductive material (sat­ 
urated, coarse-grained stratified drift over fine-grained 
stratified drift).

In the VLF forward-modeling process, the electrical 
resistivity of the two unsaturated zones and the satu­ 
rated, coarse-grained stratified drift was held constant at 
325, 1,500, and 250 ohm-m respectively; depth to water 
table was estimated from the lake level. Bedrock was 
considered to be too deep to affect the VLF readings. 
Depth to and resistivity of the fine-grained material were 
the variables at this site.

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 49. A good match between the 
calculated and field values of apparent resistivity and 
phase angle was obtained at each station. The inter­ 
preted geoelectric Earth model shows 5-15 m of satu­ 
rated coarse-grained material overlying a relatively uni­ 
form fine-grained section (60-105 ohm-m). Because

FIGURE 34. Field and computed inductive terrain-conductivity 
values for the 10-, 20-, and 40-meter-intercoil spacings at the 
study site in Smyrna, N.Y.
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FIGURE 36. Smoothed plot of field-data points from direct-current-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model for data from the study site in Simsbury, Conn.

bedrock is beyond the penetration depth of the electro­ 
magnetic methods, it was not considered in the interpre­ 
tation process.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 49) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 50). The field 
readings at the north (A') end of the profile (station 480, 
which is nearest the highway) are very high for the 20-m 
horizontal-dipole mode (32 mS/m) and could not be meas­ 
ured for the 40-m horizontal-dipole mode or the 40-m 
vertical-dipole mode. It is inferred, therefore, that either 
the interpreted geoelectric Earth model at station 480 is 
not a true representation of the subsurface, or the field 
readings are affected by cultural interference from the 
highway.

COARSE-GRAINED AQUIFER MATERIAL OVER
FINE-GRAINED MATERIAL OVERLYING CRYSTALLINE

BEDROCK

A stratified-drift deposit in Oxford, Maine, represents 
coarse-grained aquifer material over fine-grained mate­ 
rial overlying crystalline bedrock. The site is located on 
a flat outwash plain near the Oxford County Regional 
Airport (fig. 51) and could have cultural interference

from the airport or the utilities along nearby roads. A 
de-resistivity sounding, a VLF terrain-resistivity pro­ 
file, and an inductive terrain-conductivity profile were 
conducted next to the airport access road. Geologic, 
water-level, and water-quality data were available from 
wells 0-1223 and 0-1367, as well as a detailed bedrock 
contour map from a previous study (Morrissey, 1983).

The smoothed plot of the field-data points from the 
de-resistivity sounding, the computed sounding curve, 
and the resulting layered geoelectric Earth model are 
shown in figure 52. This multilayered geoelectric Earth 
model was simplified into a four-layer geoelectric model 
by using depth to water from well 0-1223, depth to 
bedrock from the bedrock contour map, and by combin­ 
ing layers of similar resistivity. The upper layer (fig. 53) 
is a thin, unsaturated, coarse-grained layer, with a 
resistivity of 10,000 ohm-m. It is underlain by saturated, 
coarse-grained material, with a resistivity of 800 ohm-m, 
which overlies saturated, fine-grained material with a 
resistivity of 60 ohm-m. The lowest layer is crystalline 
bedrock with a resistivity of 1,700 ohm-m. The specific 
conductance of the ground water from the coarse-grained 
stratified drift (well 0-1367) was 35 jjiS/cm at 25°C on 
August 12, 1980.

This field site is similar to the hypothetical model 
shown in figure 14. The results of the VLF terrain- 
resistivity survey are shown in the upper part of figure
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FIGURE 37. Simplified geoelectric Earth model from direct-current-resistivity data, and well and 
test-hole logs from the study site in Simsbury, Conn.

54. The low apparent resistivities of 90-200 ohm-m, 
reflect the presence of the buried fine-grained material. 
Phase angles of about 60° also indicate that resistive 
material overlies conductive material (saturated, coarse­ 
grained material over the fine-grained material). The 
fine-grained layers prevented deep penetration by the 
VLF method; therefore, the VLF data were independ­ 
ent of the bedrock resistivity.

In the VLF forward-modeling interpretation, the 
resistivity and thickness of the unsaturated zone, and the 
resistivities of the saturated, coarse-grained material

and the bedrock were held constant. The only 
two variables, therefore, were thickness of the coarse­ 
grained material and resistivity of the fine-grained 
material.

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 54. A good match between the 
calculated and field apparent resistivity values and phase 
angles at each station was obtained. The interpreted 
geoelectric Earth model shows a layer of saturated, 
coarse-grained material, which varies in thickness from
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8 to 13 m. This unit overlies a fine-grained layer with 
resistivity of 47-70 ohm-m. The model is not affected by 
the resistivity of the bedrock.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig. 54) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 55). The data 
at stations 180, 240, and 300 do not agree. This disagree­ 
ment may indicate that the resistivity of the fine-grained 
layer is higher than the VLF-modeled value or that the 
terrain-conductivity measurements are affected by the 
resistivity of the bedrock.

FINE-GRAINED MATERIAL OVER COARSE-GRAINED 
AQUIFER MATERIAL

The final field site, also located in Oxford, Maine (fig. 
56), represents fine-grained material over coarse­ 
grained aquifer material. This deposit is an esker, a 
sinuous glaciofluvial deposit of coarse sand and gravel. 
The esker occurs in the shallow subsurface embedded 
within fine-grained glaciomarine sediments (Morrissey, 
1983). There is no topographic evidence of the esker at 
the site, but a sand and gravel quarry was operated here 
and a prominent topographic ridge delineates the esker 
deposit 3 km south of the site. A VLF terrain-resistivity 
profile, an inductive terrain-conductivity profile, and a 
seismic-refraction profile were conducted between a 
trailer park and the Little Androscoggin River. Because 
the subsurface layers are not horizontal and homoge­ 
neous over a sufficiently wide distance, a de-resistivity 
sounding was not conducted at this site. The specific 
conductance of the ground water in a nearby unused 
spring (U.S. Geological Survey number 1366) was 110 
jjuS/cm at 25°C on August 24, 1980.

This field site is similar to several hypothetical models. 
In the center of the section, it is similar to figures 17 and 
18, fine-grained material overlying coarse-grained mate­ 
rial. At the A end of the profile, it is similar to figure 14, 
a thick section consisting of coarse-grained material 
overlying fine-grained material. At the A' end of the 
profile, it is similar to the right side of figure 10, 
fine-grained material over crystalline bedrock. The 
results of the VLF terrain-resistivity survey are shown 
in the upper part of figure 57.. The data show a marked 
increase (from 150 to 1,500 ohm-m) in the apparent 
resistivity near the center of the profile, and a corre­ 
sponding decrease in the phase angle. The increase in 
resistivity is due to the presence of the resistive coarse­ 
grained esker material in the center of the profile. The 
phase angle is 30°-35° on both ends of the line, reflecting 
the thick conductive fine-grained material over the 
resistant bedrock. The phase angle decreases to 15°-25°
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FIGURE 41. Smoothed plot of field-data points from direct-current-resistivity sounding, the computed sounding 
curve, and the resulting layered geoelectric Earth model for data from the study site in Farmington, Conn.

in the center of the profile because to the presence of a 
thin layer of conductive material over very resistive, 
thick, coarse unconsolidated material and bedrock.

In the VLF forward-modeling interpretation, the 
resistivity of the unsaturated zone and the shallow, 
saturated, coarse-grained material was held constant. 
The depth to the water table and bedrock were deter­ 
mined from the seismic-refraction data and were not 
varied. Therefore, the variables in the modeling process 
were the thickness and resistivity of the buried coarse­ 
grained aquifer material, the resistivity of the fine­ 
grained material, and the resistivity of the bedrock.

The interpreted geoelectric Earth model resulting 
from the VLF forward-modeling process is shown in the 
lower part of figure 57. A good match between computed 
and field apparent resistivities and phase angles was 
obtained. The interpreted geoelectric Earth model 
shows a thin, saturated, coarse-grained unit near the 
surface underlain by fine-grained material. The esker, 
shown in the center of the profile, contains as much as 20 
m of resistive coarse-grained material.

The interpreted layer thicknesses and resistivities 
calculated by the VLF modeling process (fig, 57) were 
used as input data to the inductive terrain-conductivity 
forward-modeling program. The computed results were 
compared with the field measurements (fig. 58). The 
terrain-conductivity model agrees fairly well with the

field data for all terrain-conductivity intercoil spacings 
and dipole modes, indicating that the interpreted geo­ 
electric Earth model closely approximates the subsur­ 
face.

After the geophysical survey was completed, two test 
holes (0-1719 and 0-1720) were drilled to confirm the 
geophysical interpretation. The geologic logs, shown in 
figure 59, verify the geophysical interpretation, except 
that they do not show the thin, fine-grained layer over­ 
lying the esker.

SUMMARY OF RESULTS OF FIELD STUDIES

Seismic-refraction, de-resistivity, and electromagnetic 
surface-geophysical methods were used at eight field 
sites in the glaciated Northeastern United States. These 
sites are characterized by unconsolidated stratified-drift 
deposits underlain by crystalline or sedimentary bed­ 
rock.

Results of the field investigations show that no single 
method is capable of defining the hydrogeologic bound­ 
aries and differentiating between fine-grained and 
coarse-grained stratified drift. The combined use of all 
these methods, or the selective use of several of them, in 
combination with the specific conductance of ground 
water and geologic logs of test holes or wells, can help to 
define depth to the water table, depth to bedrock,
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FIGURE 42.  Simplified geoelectric Earth model from direct-current-resistivity data, and well and test-hole logs from the study site in
Farmington, Conn.

general lithologic characteristics of sand and gravel 
aquifers, and lithologic changes within these glacial 
deposits.

DEPTH TO THE WATER TABLE

Seismic-refraction surveys were capable of determin­ 
ing the depth to the water table in unconsolidated 
stratified-drift deposits at all field sites. This method was 
successful because of the mean difference in seismic 
velocity between unsaturated (0.32 kilometer per second 
(km/s)) and saturated (1.54 km/s) stratified drift. Table 3 
compares the seismic velocities for these two materials at 
the six field sites that have available seismic-refraction 
data. Similar seismic velocities have been reported by 
Haeni and Melvin (1984), Morrissey and others (1985), 
and Haeni (1988).

TABLE 3. Interpreted seismic velocities in stratified-drift deposits at 
six field sites in the glaciated Northeastern United States

Depth of water 
TTV i j -fo table determined 
Field Slte from seismic 

refraction data (m)

Stonington, Conn. .

Granby, Conn...... 
Smyrna, N.Y. .....
Simsbury, Conn. . . .

Farmington, Conn..

Oxford, Maine 
(esker site). .....

Mean

2.44

1.83 
1.22 
1.22

3.66

2.14

Interpreted 
seismic velocity 
in unsaturated 
material (km/s)

0.34

.30 

.34 

.21

.46

.27

.32

Interpreted 
seismic velocity 

in saturated 
material (km/s)

1.59

1.56 
1.40 
1.59

1.56

1.53

1.54
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FIGURE 45. Geologic logs from test holes in Farmington, Conn.

The de-resistivity of unsaturated and saturated 
stratified-drift deposits depends on a combination of 
factors, including porosity, moisture content, mineral­ 
ogy, and specific conductance in each unit. In combina­ 
tion, these variables do not always result in a resistivity 
contrast at the water-table surface. The de-resistivity 
method was able to detect the water table at the 
Simsbury, Stonington, and Farmington, Conn.; the 
Smyrna, N.Y.; and the airport road in Oxford, Maine, 
field sites, but not at the Preble, N.Y., nor Granby, 
Conn., field sites.

The unsaturated layer resistivities presented in table 4 
were determined by combining several individual geo- 
electric layers from the interpreted de-resistivity data 
and comparing these values with the lithologic descrip­ 
tion of the layer from a well or test hole at the site. In 
general, two layers were defined: an upper soil layer, 
with resistivities ranging from 325 to 10,000 ohm-m; and 
a more resistive, unsaturated stratified-drift layer, with 
resistivities ranging from 1,500 to 10,000 ohm-m. The

saturated stratified-drift layer resistivities shown in 
table 5 were similarly determined and varied from 60 to 
2,000 ohm-m.

Electromagnetic methods depend on the resistivity 
contrast between layers to differentiate the boundaries 
between them and, therefore, are subject to the same 
limitations as the de-resistivity method.

DEPTH TO BEDROCK

Depth to bedrock was consistently defined by inter­ 
preting seismic-refraction data from all of the field sites 
where it was used. The velocity difference between 
saturated, unconsolidated materials and bedrock ranged 
from 2.13 km/s at Granby, Conn., to 3.90 km/s at 
Stonington, Conn. The seismic velocity of the saturated, 
unconsolidated materials is listed in table 3. The seismic 
velocity of the bedrock at each site is listed in table 6. 
These velocities are similar to those reported by Haeni
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FIGURE 46. Location of the study site in Preble, N.Y., including 
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TABLE 4.  Interpreted resistivity of unsaturated, stratified-drift 
deposits at seven field sites in the Northeastern United States

Interpreted

Field site

Generalized
lithologic 

description from
well or 

test-hole logs

direct current-
sounding data

(ohm-m)

Stonington, Conn..

Granby, Conn.

Smyrna, N.Y. 

Simsbury, Conn.

Farmington, Conn.

Preble, N.Y.

Oxford, Maine 
(airport site)

Soil; sand fine; and
silt 0.0-0.9 450 

Sand, fine to coarse;
gravel .9-2.0 2,000

Soil, and silty loam .0-.5 425 
Sand, medium to 

coarse; gravel .5-3.6 7,000

Soil .0-.6 700 
Gravel .6-2.4 2,200

Soil .0-.5 400 
Sand, very fine to 

medium .5-1.8 1,500

Soil and sand, fine to
medium 0.0-0.8 900 

Sand and gravel .8-2.5 1,740

Soil .0-1.5 325 
Sand and gravel 1.5-5.6 1,500

Soil and sand, coarse 
to very coarse .0-1.2 10,000
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TABLE 5. Interpreted resistivity of saturated, stratified-drift deposits at eight field sites in the Northeastern United States
[ , no data available]

Field site

Stonington, Conn. ......

Granby, Conn. ..........

Smyrna, N.Y. ..........

Simsbury, Conn. .......

Farmington, Conn.

Preble, N.Y. ...........

Oxford, Maine 
(airport site) .........

Oxford, Maine 
(esker site) ...........

Generalized 
lithologic description 

from well or test-hole logs

. . . Sand, medium to very coarse, and gravel

. . . Sand, medium to very coarse, and gravel
Sand, fine to coarse 

Gravel, well sorted

... Sand, fine to very coarse
Sand, very fine, and silt and clay 

Sand, fine to coarse, and some gravel
Sand, very fine to fine, 
and silt and clay

. . . Sand and gravel, some silt
Sand, fine, and some silt 

... Sand and gravel
Sand, very fine to fine, and silt and clay 

... Sand and gravel
Sand, very fine, and silt and clay

Specific conductance 
of ground water 
((juS/cm at 25°C)

102

130

180

162

550

35

110

Interpreted 
resistivity from 
direct-current 
sounding data 

(ohm-m)

500

2,000
450 

550

500
140 

560

240 

250
60 

800
60

 

Interpreted 
resistivity from 

very-low-frequency 
modeling 
(ohm-m)

150-450

2,000-3,000
held constant 

160-300

held constant
16-140 

held constant

75-200 

held constant
60-105 

held constant
47-70 

800-5,000
110-255

Possible road salt contamination in well.
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TABLE 6.  Interpreted seismic velocity and resistivity of sedimentary and crystalline bedrock at seven field sites in the Northeastern United States
[ , no data available]

Field site

Stonington, Conn. .......

Granby, Conn.. ..........

Smyrna, N. Y. ...........

Simsbury, Conn. ........

Farmington, Conn. ......

Oxford, Maine 
(airport site) ..........

Oxford, Maine 
(esker site) ............

Lithologic description

Gneiss, quartz-feldspar-biotite

Gneiss, muscovite-biotite-quartz
Siltstone, very fine-grained 

Shale

Sandstone, fine-grained

Sedimentary, arkose

Granite, biotite-rich

Granite, biotite-rich

Seismic 
velocity 
(km/s)

5.49

3.69 

4.42

4.39

4.09

5.03

Interpreted 
resistivity from 
direct-current 
sounding data 

(ohm-m)

1,600

250
250 

300

200

140

1,700

Interpreted 
resistivity from 

very-low-frequency 
modeling 
(ohm-m)

1,100-5,000

135-150
35-115 

133^330

held constant

held constant

2,000-10,000

TABLE 7 . Comparison of depth to bedrock, determined by seismic- 
refraction, direct-current-resistivity, and drill-hole data 

[ , no data available]

Depth to bedrock, in meters

Field site

Stonington, Conn. . .

Granby, Conn. ..... 
Smyrna, N.Y. ......
Simsbury, Conn. . . .

Farmington, Conn. .
Oxford, Maine 

(esker site) ......

Seismic 
refraction

14.0
16.2
17.7

12.7 
17.0 
60.0

73.2

24.0

34.0

Direct-current
resistivity

17.8

14.0 
12.4 

not detected

not detected

-

, as determined by

Drill hole

14.0 (SN-143th)
13.4 (SN-164)
14.3 (SN-144th)

12.5 

61.0

76.0 (refusal)

22.0 (0-1720) 
(refusal)

31.0 (0-1719)
(bottom of hole)
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and Anderson (1980), Morrissey and others (1985), Haeni 
(1986a), and Haeni (1988) for similar geologic settings.

The de-resistivity method was able to detect the 
bedrock surface at Stonington and Granby, Conn., and 
Smyrna, N.Y. This method was not able to detect the 
bedrock at Farmington or Simsbury, Conn., because of 
the lack of electrical resistivity contrast between the 
saturated, unconsolidated material (table 5) and bedrock 
(table 6). A comparison of the depth to bedrock deter­ 
mined by drilling with the depth interpreted from the 
seismic-refraction and de-resistivity data are shown in 
table 7. In general, the seismic-refraction depths agree 
with the test-hole data for all of the field sites. The 
depths determined from resistivity data were not as 
accurate as the seismic-refraction data. At two sites, 
depth to bedrock could not be detected from resistivity 
data. Resistivity values for crystalline rock changed 
substantially between Granby, Stonington, and Oxford 
(table 6). Resistivity values at Granby were obtained 
near a major geologic fault separating crystalline and 
sedimentary rocks. In outcrops near the fault, both rock 
types are highly fractured. These fractures and the 
presence of more conductive ground water in the sedi­ 
mentary rocks are probably the reasons for the abnor­ 
mally low resistivities in the crystalline bedrock.

Electromagnetic methods were used to determine the 
depth to bedrock at the Granby site. Interpretation of 
these data was satisfactory when the geoelectric Earth 
was limited to four layers and the only variables in the 
modeling process were thickness of saturated material 
and resistivity of the bedrock. Thickness and resistivity 
of the overlying unsaturated units and the resistivity of 
the saturated units were assumed to be known and were 
held constant.

CHARACTERISTICS OF SAND AND GRAVEL AQUIFERS

Dc-resistivity soundings at each field site could be 
correlated qualitatively with the general grain-size char­ 
acteristics of the aquifer material. The relations among 
lithology of stratified-drift deposits, specific conductance 
of ground water, interpreted de-resistivity, and inter­ 
preted VLF resistivity at the eight field sites is shown in 
table 5. The data presented indicate that when the 
specific conductance of ground water remains relatively 
constant, the bulk resistivity of the aquifer is generally 
representative of the aquifer's grain-size characteristics. 
Specifically, coarse-grained material generally is more 
resistive than fine-grained material. A limitation of the 
de-resistivity method is that small-scale horizontal 
changes of the resistivity of the subsurface units cannot 
be detected with this method.

Electromagnetic methods detect smaller changes of 
the subsurface units than de-resistivity methods and,

therefore, are capable of mapping hydrogeologic features 
such as eskers and variable thicknesses of coarse-grained 
units. However, independent data (drill-hole logs or 
geologic knowledge of the area) on subsurface conditions 
at any site must be used to confirm the results of these 
methods.

The seismic-refraction method cannot be used to 
detect grain-size changes in aquifer materials because 
seismic velocity does not vary greatly with changes in 
the grain size of saturated, unconsolidated materials 
(table 1).

CONCLUSIONS

Computer forward-modeling programs were used to 
calculate the response of electromagnetic methods in 
hydrogeologic settings typical of the glaciated North­ 
eastern United States. Subsequent surface-geophysical 
field investigations were conducted at eight sites. The 
two parts of this study have shown that the combined use 
of seismic-refraction, de-resistivity, VLF terrain- 
resistivity, and inductive terrain-conductivity methods 
can distinguish between fine-grained and coarse-grained 
stratified-drift aquifers and can be used to determine 
their hydrogeologic boundaries.

Forward-modeling studies of hypothetical systems 
demonstrated that both VLF terrain-resistivity and 
inductive terrain-conductivity methods can be used to 
detect horizontal and vertical changes in electrical prop­ 
erties of the subsurface layers or materials. Some 
surface-geophysical methods might work better in cer­ 
tain hydrogeologic settings than in others because of 
different operating principles of the individual methods. 
The forward-modeling results indicated that in resistive 
terrains, the VLF terrain-resistivity method (1) can be 
used to measure moderate horizontal and vertical 
changes in electrical properties of the subsurface, (2) has 
a penetration depth of about 100 m, and (3) can detect 
conductive material underlying resistive material. The 
inductive terrain-conductivity method (1) is insensitive 
to large changes in the resistivity of resistive layers, (2) 
maintains a constant penetration depth, and (3) can be 
used to detect conductive layers at depth. In conductive 
terrains, the VLF terrain-resistivity method is only 
sensitive to near-surface resistivity changes and has a 
limited depth of penetration. Also, the inductive terrain- 
conductivity method (1) is sensitive to changes in the 
thickness and conductivity of individual conductive lay­ 
ers, (2) maintains its depth of penetration, and (3) can be 
used to detect small changes in layer conductivities.

Surface-geophysical surveys seismic-refraction, de- 
resistivity, and electromagnetic methods at eight sites 
in Connecticut, New York, and Maine have shown that
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FIGURE 48.  Simplified geoelectric Earth model from direct-current-resistivity data, and well and test-hole logs from the study
site in Preble, N.Y.

FIGURE 49. Very-low-frequency apparent resistivity and phase- 
angle field data, and the interpreted geoelectric Earth model 
from direct-current-resistivity and very-low-frequency apparent 
resistivity data, from the study site in Preble, N.Y.
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FIGURE 51. Location of the study site at the airport in Oxford, 
Maine, including wells, test holes, and surface-geophysical survey 
lines.

no single method can be used to define the hydrogeologic 
boundaries and distinguish between fine-grained and 
coarse-grained stratified drift. The combined interpreta­ 
tion of the seismic-refraction and de-resistivity data 
helps to delineate boundaries, distinguish between fine­ 
grained and coarse-grained deposits, and provide infor­ 
mation on the specific conductance of ground water 
within sand and gravel aquifers.

The seismic-refraction method was used to determine 
depths to the water table and bedrock in all hydrogeo­ 
logic settings. This method cannot be used to detect 
lithologic changes within saturated stratified-drift 
aquifers.

De-resistivity can be used to detect resistivity changes 
within stratified-drift material caused by water-quality 
(specific conductance) or lithologic variations. At five 
field sites, the de-resistivity method could be used to 
determine depth to water table, and at three field sites, 
it could be used to determine depth to bedrock.

The combined use of two electromagnetic methods, 
VLF terrain-resistivity and inductive terrain- 
conductivity, further improves characterization of the 
aquifer systems. These two methods can be used con­ 
junctively to refine the interpretation of a model based 
on seismic-refraction and de-resistivity data. These 
methods also are useful for mapping electrical anomalies 
that relate to small-scale vertical or lateral changes in 
aquifer lithology and specific conductance of ground 
water. The successful interpretation of the electromag­ 
netic data, over an earth with more than two layers, 
requires subsurface data from seismic-refraction and 
de-resistivity methods or other sources to obtain a geo­ 
logically reasonable solution.

Interpreted de-resistivities or interpreted VLF resis­ 
tivities of each subsurface layer, ground-water specific 
conductance, and lithologic logs from nearby test holes or 
wells were compared at all eight field sites. The results 
indicate that for a given specific conductance of ground 
water, fine-grained stratified drift is more conductive 
than coarse-grained stratified drift. With increasing spe­ 
cific conductance of ground water, the same general 
relation applies, but the values of each layer's resistivity 
decreases. The resistivity, therefore, of sand and gravel 
aquifers in the Northeastern United States can be 
related empirically to the grain size of the aquifer 
material in limited geographic areas where the specific 
conductance of ground water is considered uniform.
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